5.5 The Substitution Rule/33: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
 
(9 intermediate revisions by 2 users not shown)
Line 8: Line 8:
u &= \cot{(x)} \\[2ex]
u &= \cot{(x)} \\[2ex]
du &= -csc^2{(x)}dx \\[2ex]
du &= -csc^2{(x)}dx \\[2ex]
dx &= \frac{du}{-csc^2{(x)}} \\[2ex]
-du &= \csc^2{(x)}dx \\[2ex]
\end{align}
\end{align}
</math>
</math>
Line 15: Line 15:
<math>
<math>
\begin{align}
\begin{align}
&= \int {\sqrt{u}}  \csc^2{(x)}  \frac{du}{-csc{(x)}}
&= - \int{(\sqrt{u})}du \\[2ex]
&= - \int{(\sqrt{u})}du \\[2ex]
&= \int (u^{\frac{1}{2}})du \\[2ex]
&= \int (u^{\frac{1}{2}})du \\[2ex]
&= -\frac{2}{3} u + c \\[2ex]
&= -\frac{2}{3} u + C \\[2ex]
&= -\frac{2}{3} (\cot{(x)}^{\frac{3}{2}}) +c
&= -\frac{2}{3} (\cot{(x)})^{\frac{3}{2}} +C
\end{align}
\end{align}
</math>
</math>

Latest revision as of 09:25, 16 December 2022