5.5 The Substitution Rule/7: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
 
(39 intermediate revisions by the same user not shown)
Line 1: Line 1:
<math>
<math>
\int\xsin(x^{2})dx
\int x\sin{(x^{2})}dx
</math>
</math>


Line 7: Line 7:
u &=x^{2} \\[2ex]
u &=x^{2} \\[2ex]
du &=2xdx \\[2ex]
du &=2xdx \\[2ex]
\frac{1}{2}du=dx
\frac{1}{2}du &=dx \\[2ex]


\end{align}
\end{align}
Line 15: Line 15:
\begin{align}
\begin{align}


\int\xsin(x^{2})dx &=
\int x\sin{(x^{2})}dx &=\frac{1}{2}\int\sin{(u)}du \\[2ex]
 
&= -\frac{1}{2}\cos{(u)}+C \\[2ex]
&= -\frac{1}{2}\cos{(x^{2})}+C


\end{align}
\end{align}
</math>
</math>

Latest revision as of 20:02, 7 September 2022

Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \int x\sin {(x^{2})}dx}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} u &=x^{2} \\[2ex] du &=2xdx \\[2ex] \frac{1}{2}du &=dx \\[2ex] \end{align} }

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \int x\sin{(x^{2})}dx &=\frac{1}{2}\int\sin{(u)}du \\[2ex] &= -\frac{1}{2}\cos{(u)}+C \\[2ex] &= -\frac{1}{2}\cos{(x^{2})}+C \end{align} }