5.5 The Substitution Rule/35: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
(Created page with "<math>\begin{align} \ \int \frac{sin 2 x}{1 + cos^2x} dx \end{align} </math>")
 
No edit summary
 
(11 intermediate revisions by the same user not shown)
Line 1: Line 1:
<math>\begin{align} \ \int \frac{sin 2 x}{1 + cos^2x} dx
<math>\begin{align} \ \int \frac{sin 2 x}{1 + cos^2x} dx
\end{align}
</math>
<math>\begin{align}
let \; u &=1 + cos^2x  \\[2ex]
du &= 2cosx \;\cdot (-sinx)\;dx \\[2ex]
-du & = 2sin(x)cos(x)\;dx & \\[2ex]
-du & = sin(2x)dx &
\end{align}
</math>
<math>\begin{align} \ \int \frac{sin 2 x}{1 + cos^2x} dx\;=\; -\ \int \frac {du}{u}\;=\;-ln( 1 + u) + c\;=\;-| 1 + cos^2x| + c
\end{align}
\end{align}
</math>
</math>

Latest revision as of 05:31, 5 September 2022

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \ \int \frac{sin 2 x}{1 + cos^2x} dx \end{align} }

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} let \; u &=1 + cos^2x \\[2ex] du &= 2cosx \;\cdot (-sinx)\;dx \\[2ex] -du & = 2sin(x)cos(x)\;dx & \\[2ex] -du & = sin(2x)dx & \end{align} }


Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \ \int \frac{sin 2 x}{1 + cos^2x} dx\;=\; -\ \int \frac {du}{u}\;=\;-ln( 1 + u) + c\;=\;-| 1 + cos^2x| + c \end{align} }