5.4 Indefinite Integrals and the Net Change Theorem/17: Difference between revisions
No edit summary |
m (Protected "5.4 Indefinite Integrals and the Net Change Theorem/17" ([Edit=Allow only administrators] (indefinite) [Move=Allow only administrators] (indefinite))) |
||
| (42 intermediate revisions by 2 users not shown) | |||
| Line 1: | Line 1: | ||
<math> | |||
\int(1+\tan^2{\alpha})\,d\alpha = \int\sec^2\alpha \,d\alpha = \tan\alpha + C | |||
</math> | |||
<math>\ | |||
<math>\ | Note: <math>1+\tan^2{\alpha} = \sec^2\alpha</math> | ||
Or, | |||
<math> | |||
<math> | |||
\int(1+\tan^2{\alpha})\,d\alpha = \int\left(1+\frac{sin^2\alpha}{cos^2\alpha}\right)d\alpha = \int\left(\frac{cos^2\alpha+sin^2\alpha}{cos^2\alpha}\right)d\alpha = \int\frac{1}{cos^2\alpha}\,d\alpha = | |||
\int\sec^2\alpha \,d\alpha = \tan{\alpha}+C | |||
</math> | |||
Note: <math>\cos^2\alpha+sin^2\alpha=1</math> | |||
Latest revision as of 19:39, 21 September 2022
Note: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 1+\tan^2{\alpha} = \sec^2\alpha}
Or,
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int(1+\tan^2{\alpha})\,d\alpha = \int\left(1+\frac{sin^2\alpha}{cos^2\alpha}\right)d\alpha = \int\left(\frac{cos^2\alpha+sin^2\alpha}{cos^2\alpha}\right)d\alpha = \int\frac{1}{cos^2\alpha}\,d\alpha = \int\sec^2\alpha \,d\alpha = \tan{\alpha}+C }
Note: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \cos^2\alpha+sin^2\alpha=1}