6.1 Angles and Their Measure/41: Difference between revisions
Jump to navigation
Jump to search
(Created page with "<math> 180^{\circ}\cdot\frac{\pi}{180^{\circ}}=\frac{-(\cancel{2}\cdot \cancel{2}\cdot \cancel{5}\cdot \cancel{3})}{1}\cdot\frac{\pi}{\cancel{2}\cdot \cancel{2} \cdot \cancel{5} \cdot \cancel{3} \cdot 3} = -\frac{\pi}{3} </math>") |
No edit summary |
||
| (8 intermediate revisions by the same user not shown) | |||
| Line 1: | Line 1: | ||
<math> | <math> | ||
{180^{\circ}}=\frac{\cancel{2}\cdot \cancel{2}\cdot \cancel{5}\cdot \cancel{3}\cdot\cancel{3}}{1}\cdot\frac{\pi}{\cancel{2}\cdot \cancel{2} \cdot \cancel{5} \cdot \cancel{3} \cdot\cancel 3} | |||
= {\pi} | |||
</math> | </math> | ||
Latest revision as of 22:16, 25 August 2022
Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {180^{\circ }}={\frac {{\cancel {2}}\cdot {\cancel {2}}\cdot {\cancel {5}}\cdot {\cancel {3}}\cdot {\cancel {3}}}{1}}\cdot {\frac {\pi }{{\cancel {2}}\cdot {\cancel {2}}\cdot {\cancel {5}}\cdot {\cancel {3}}\cdot {\cancel {3}}}}={\pi }}