6.1 Angles and Their Measure/36: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
| (33 intermediate revisions by 2 users not shown) | |||
| Line 1: | Line 1: | ||
<math>120^{\circ}\cdot\frac{\pi}{180^{\circ}}=\frac{2\cdot 2\cdot 2\cdot 3\cdot 5}{1}\cdot\frac{\pi}{2\cdot 2 \cdot 5 \cdot 3 \cdot 3</math> | <math> | ||
120^{\circ}\cdot\frac{\pi}{180^{\circ}}=\frac{\cancel{2}\cdot \cancel{2}\cdot 2\cdot \cancel{3}\cdot \cancel{5}}{1}\cdot\frac{\pi}{\cancel{2}\cdot \cancel{2} \cdot \cancel{5} \cdot \cancel{3} \cdot 3} | |||
= \frac{2\pi}{3} | |||
</math> | |||
Latest revision as of 21:59, 25 August 2022
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 120^{\circ}\cdot\frac{\pi}{180^{\circ}}=\frac{\cancel{2}\cdot \cancel{2}\cdot 2\cdot \cancel{3}\cdot \cancel{5}}{1}\cdot\frac{\pi}{\cancel{2}\cdot \cancel{2} \cdot \cancel{5} \cdot \cancel{3} \cdot 3} = \frac{2\pi}{3} }