Math: Difference between revisions
| Line 14: | Line 14: | ||
Fractions: <syntaxhighlight lang="html5" inline><math>\frac{1}{x}</math></syntaxhighlight> gives <math>\frac{1}{x}</math><br> | Fractions: <syntaxhighlight lang="html5" inline><math>\frac{1}{x}</math></syntaxhighlight> gives <math>\frac{1}{x}</math><br> | ||
Square root: <syntaxhighlight lang="html5" inline><math>\sqrt{x+1}</math></syntaxhighlight> gives <math>\sqrt{x+1}</math><br> | Square root: <syntaxhighlight lang="html5" inline><math>\sqrt{x+1}</math></syntaxhighlight> gives <math>\sqrt{x+1}</math><br> | ||
General | General radical: <syntaxhighlight lang="html5" inline><math>$\sqrt[3]{64}=4</math></syntaxhighlight> gives <math>\sqrt[3]{64}=4</math><br> | ||
---- | ---- | ||
Revision as of 15:32, 25 August 2022
Basics
To render any math equation, the math equation must be between <math></math> i.e., <math>f(x)=x^2</math> gives Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f(x)=x^2}
.
Common math commands
Superscript & Subscript
Superscript: <math>x^{5+y}</math> gives Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle x^{5+y}}
Subscript: <math>x_{5+t}</math> gives
Together: <math>x_{5+t}^{5+y}</math> gives Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle x_{5+t}^{5+y}}
Fractions & Radicals
Fractions: <math>\frac{1}{x}</math> gives Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{1}{x}}
Square root: <math>\sqrt{x+1}</math> gives Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \sqrt{x+1}}
General radical: <math>$\sqrt[3]{64}=4</math> gives Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \sqrt[3]{64}=4}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \int_{0}^{1}\left(3+x\sqrt{x}\right)dx &= \int_{0}^{1}\left(3+x^{1}{x}^{\frac{1}{2}}\right)dx = \int_{0}^{1}\left(3+x^{1+\frac{1}{2}}\right)dx = \int_{0}^{1}\left(3+x^{\frac{3}{2}}\right)dx \\[2ex] &= 3x+\frac{x^{\frac{3}{2}+1}}{\frac{3}{2}+1}\bigg|_{0}^{1} = 3x+\frac{x^{\tfrac{5}{2}}}{\frac{5}{2}}\bigg|_{0}^{1} = 3x+\frac{2x^{\frac{5}{2}}}{5}\bigg|_{0}^{1} \\[2ex] &= \left[3(1)+\frac{2(1)^{5/2}}{5}\right]-\left[3(0)+\frac{2(0)^{5/2}}{5}\right] \\[2ex] &= 3+\frac{2}{5} = \frac{15}{5}+\frac{2}{5} = \frac{17}{5} \end{align} }
123Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle }