5.3 The Fundamental Theorem of Calculus/28: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
| Line 3: | Line 3: | ||
\begin{align} | \begin{align} | ||
\int_{0}^{1}\left(3+x\sqrt{x}\right)dx &= \int_{0}^{1}\left(3+x^{1}{x}^{\frac{1}{2}}\right)dx | \int_{0}^{1}\left(3+x\sqrt{x}\right)dx &= \int_{0}^{1}\left(3+x^{1}{x}^{\frac{1}{2}}\right)dx | ||
= \int_{0}^{1}\left(3+x^{1+\frac{1}{2}}\right)dx = \int_{0}^{1}\left(3+x^{\frac{3}{2}}\right)dx | &= \int_{0}^{1}\left(3+x^{1+\frac{1}{2}}\right)dx &= \int_{0}^{1}\left(3+x^{\frac{3}{2}}\right)dx | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
Revision as of 20:49, 23 August 2022
Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}\int _{0}^{1}\left(3+x{\sqrt {x}}\right)dx&=\int _{0}^{1}\left(3+x^{1}{x}^{\frac {1}{2}}\right)dx&=\int _{0}^{1}\left(3+x^{1+{\frac {1}{2}}}\right)dx&=\int _{0}^{1}\left(3+x^{\frac {3}{2}}\right)dx\end{aligned}}}