5.3 The Fundamental Theorem of Calculus/8: Difference between revisions
No edit summary |
No edit summary |
||
| Line 2: | Line 2: | ||
\begin{align} | \begin{align} | ||
g(x)=\int_{3}^{x}e^{t^2-t}dt \\ | g(x)=\int_{3}^{x}e^{t^2-t}dt \\ | ||
\frac{d}{dx}\left[g(x)\right] = \frac{d}{dx}\left[\int_{3}^{x}e^{t^2-t}dt\right]=1e^{x^2-x}-0e^{3^2-3}=e^{x^2-x} \\ | \frac{d}{dx}\left[g(x)\right] = \frac{d}{dx}\left[\int_{3}^{x}e^{t^2-t}dt\right] \\ | ||
=1e^{x^2-x}-0e^{3^2-3}=e^{x^2-x} \\ | |||
\text{Therefore, } g'(x)=e^{x^2-x} | \text{Therefore, } g'(x)=e^{x^2-x} | ||
Revision as of 20:34, 23 August 2022
Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}g(x)=\int _{3}^{x}e^{t^{2}-t}dt\\{\frac {d}{dx}}\left[g(x)\right]={\frac {d}{dx}}\left[\int _{3}^{x}e^{t^{2}-t}dt\right]\\=1e^{x^{2}-x}-0e^{3^{2}-3}=e^{x^{2}-x}\\{\text{Therefore, }}g'(x)=e^{x^{2}-x}\end{aligned}}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} u & = \tfrac{1}{\sqrt{2}}(x+y) \qquad & x &= \tfrac{1}{\sqrt{2}}(u+v) \\[0.6ex] v & = \tfrac{1}{\sqrt{2}}(x-y) \qquad & y &= \tfrac{1}{\sqrt{2}}(u-v) \end{align}}