5.3 The Fundamental Theorem of Calculus/8: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
<math>
<math>
\begin{align}
\begin{align}
g(x)=\int_{3}^{x}e^{t^2-t}dt \\
g(x)=\int_{3}^{x}e^{t^2-t}dt  
\frac{d}{dx}\left[g(x)\right] = \frac{d}{dx}\left[\int_{3}^{x}e^{t^2-t}dt\right]=1e^{x^2-x}-0e^{3^2-3}=e^{x^2-x} \\
\frac{d}{dx}\left[g(x)\right] = \frac{d}{dx}\left[\int_{3}^{x}e^{t^2-t}dt\right]=1e^{x^2-x}-0e^{3^2-3}=e^{x^2-x}  
\text{Therefore, } g'(x)=e^{x^2-x} \\
\text{Therefore, } g'(x)=e^{x^2-x}  
\end{align}
\end{align}
</math>
</math>

Revision as of 20:28, 23 August 2022

Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}g(x)=\int _{3}^{x}e^{t^{2}-t}dt{\frac {d}{dx}}\left[g(x)\right]={\frac {d}{dx}}\left[\int _{3}^{x}e^{t^{2}-t}dt\right]=1e^{x^{2}-x}-0e^{3^{2}-3}=e^{x^{2}-x}{\text{Therefore, }}g'(x)=e^{x^{2}-x}\end{aligned}}}