5.3 The Fundamental Theorem of Calculus/8: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
Tag: Manual revert
No edit summary
Line 1: Line 1:
<math>g(x)=\int_{3}^{x}e^{t^2-t}dt \\
<math>g(x)=\int_{3}^{x}e^{t^2-t}dt //
\frac{d}{dx}\left[g(x)\right] = \frac{d}{dx}\left[\int_{3}^{x}e^{t^2-t}dt\right]=1e^{x^2-x}-0e^{3^2-3}=e^{x^2-x}  
\frac{d}{dx}\left[g(x)\right] = \frac{d}{dx}\left[\int_{3}^{x}e^{t^2-t}dt\right]=1e^{x^2-x}-0e^{3^2-3}=e^{x^2-x}  
\text{Therefore, } g'(x)=e^{x^2-x}
\text{Therefore, } g'(x)=e^{x^2-x}
</math>
</math>

Revision as of 20:27, 23 August 2022

Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle g(x)=\int _{3}^{x}e^{t^{2}-t}dt//{\frac {d}{dx}}\left[g(x)\right]={\frac {d}{dx}}\left[\int _{3}^{x}e^{t^{2}-t}dt\right]=1e^{x^{2}-x}-0e^{3^{2}-3}=e^{x^{2}-x}{\text{Therefore, }}g'(x)=e^{x^{2}-x}}