2024/G2/2: Difference between revisions
No edit summary |
No edit summary |
||
| Line 8: | Line 8: | ||
==2.5 CONTINUITY == | ==2.5 CONTINUITY == | ||
- A fraction is <u>continuous</u> at a number "a" if the <math> \lim_{x\to a} f(x) = f(a) </math><br> | |||
1. <math> \lim_{x\to a} f(x) </math> Exist <br> | |||
2. f(a) Exist <br> | |||
Ex. 2 <br> | |||
a) <math> f(x) = {\frac{x^(2)-x-2}{x-2}} x=2 </math><br> | |||
b) <math> f(x) = \begin{cases} | |||
{\frac{1}{x^2}}, & \text{if }x\text{ is ≠ 0} \\ | |||
1, & \text{if }x\text{ is = 0} | |||
\end{cases} </math><br> | |||
c) <math> f(x) = \begin{cases} | |||
{\frac{x^(2)-x-2}{x-2}}, & \text{if }x\text{ is ≠ 2} \\ | |||
1, & \text{if }x\text{ is = 2} | |||
\end{cases} </math><br> | |||
<math> \lim_{x\to 2} {\frac{x^(2)-x-2}{x-2}} = \lim_{x\to 2} {\frac{(x-2)(x+1)}{(x-2)}} = x+1 = 3 </math><br> | |||
<math> = (2)+1=3 </math><br> | |||
==2.6 LIMITS AT INFINITY; HORIZONTAL ASYMPTOTES == | ==2.6 LIMITS AT INFINITY; HORIZONTAL ASYMPTOTES == | ||
Latest revision as of 17:45, 19 April 2023
2.2 THE LIMIT OF A FUNCTION
Notes go here for 2.2... example:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \lim_{z\to z} [f(x) g(x]) = c \cdot[ \lim_{x\to a} f(x) ] }
Limits are ALWAYS near the number, NEVER on the number.
2.3 CALCULATING LIMITS USING THE LIMIT LAWS
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \lim_{x\to a} = c \cdot [\lim_{x\to a} f(x)] }
2.5 CONTINUITY
- A fraction is continuous at a number "a" if the Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \lim_{x\to a} f(x) = f(a) }
1. Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \lim_{x\to a} f(x) }
Exist
2. f(a) Exist
Ex. 2
a) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f(x) = {\frac{x^(2)-x-2}{x-2}} x=2 }
b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f(x) = \begin{cases} {\frac{1}{x^2}}, & \text{if }x\text{ is ≠ 0} \\ 1, & \text{if }x\text{ is = 0} \end{cases} }
c) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f(x) = \begin{cases} {\frac{x^(2)-x-2}{x-2}}, & \text{if }x\text{ is ≠ 2} \\ 1, & \text{if }x\text{ is = 2} \end{cases} }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \lim_{x\to 2} {\frac{x^(2)-x-2}{x-2}} = \lim_{x\to 2} {\frac{(x-2)(x+1)}{(x-2)}} = x+1 = 3 }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle = (2)+1=3 }
2.6 LIMITS AT INFINITY; HORIZONTAL ASYMPTOTES
Horizontal Asymptote or H.A
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f(x)=\lim_{x \to \infty}\frac{x^2-1}{x^2+1} =\lim_{x \to \infty}\frac{x^2-1}{x^2+1}\cdot \frac{\frac{1}{x^2}}{\frac{1}{x^2}}=\lim_{x \to \infty}\frac{1-\frac{1}{x^2}}{1+\frac{1}{x^2}}=\frac{1-0}{1+0}=1 }
This ultimately means that the equation will APPROACH TO ONE it will not ever be on one.
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \lim_{x \to \infty}\frac{1}{x}=0 \lim_{x \to -\infty}\frac{1}{x}=0 }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \lim_{x \to \infty}\frac{3x^2-x-2}{5x^2+4x+1}=\lim_{x \to \infty}(\frac{3x^2-x-2}{5x^2+4x+1})\cdot\frac{\frac{1}{x^2}}{\frac{1}{x^2}}=\lim_{x \to \infty}\frac{3-\frac{1}{x}-\frac{2}{x^2}}{5+\frac{4}{x}+\frac{1}{x^2}}=\frac{3-(0)-(0)}{5+(0)+(0)}=\frac{3}{5}}
V.A or a vertical asymptote is when the function becomes infinity such as
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \lim_{x \to c}f(x)=\infty}
2.7 DERIVATIVES AND RATES OF CHANGE
To find the Tangent Line we use Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \lim_{h \to 0}\frac{f(x+h)-f(x)}{h} }
We later apply the points on which we want to find the slope.
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f(x)=x^2 f'(x)=\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}= \lim_{h\to 0}\frac{(x+h)^2-x^2}{h}= \lim_{h \to 0}\frac{x^2+2xh+h^2-x^2)}{h}=\lim_{h\to 0}\frac{h^2+2xh}{h}= \lim_{h\to 0}\frac{(\cancel{h})(h+2x)}{\cancel{h}} }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle = \lim_{h \to 0}h+2x=(0)+2x }
2.8 THE DERIVATIVE AS A FUNCTION
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle {\frac{d}{dx}} [c] = 0 }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle {\frac{d}{dx}} [c\cdot f(x)] = c\cdot{\frac{d}{dx}} [f(x)] }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle {\frac{d}{dx}} [f(x)\pm g(x)] = {\frac{d}{dx}} [f(x)] \pm {\frac{d}{dx}} [g(x)] }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle {\frac{d}{dx}} [x^n] = n \cdot x^{(n-1)} }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle {\frac{d}{dx}} [a^x] = \ln(a)a^x }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle {\frac{d}{dx}} [e^x] = e^x }