2024/G9/12: Difference between revisions

From Mr. V Wiki Math
< 2024‎ | G9
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
<math>\mathbf{Chapter 3 Section 2}</math><br>  
qQ`<math>\mathbf{Chapter 3 Section 2}</math><br>  
<math>{\frac{d}{dx}} [c] = 0 </math> <br>
<math>{\frac{d}{dx}} [c] = 0 </math> <br>
<math>{\frac{d}{dx}} [c\cdot f(x)] = c\cdot{\frac{d}{dx}} [f(x)] </math> <br>
<math>{\frac{d}{dx}} [c\cdot f(x)] = c\cdot{\frac{d}{dx}} [f(x)] </math> <br>
Line 27: Line 27:
<math>=\frac{(2x^4+x^4+x^3+12x+6-[3x^4+3x^2-6x^2]}{(x^3+6)^2}</math><br>
<math>=\frac{(2x^4+x^4+x^3+12x+6-[3x^4+3x^2-6x^2]}{(x^3+6)^2}</math><br>
<math>=\frac{-x^4-2x^3+6x^2+12x+6}{(x^3+6)^2}</math><br>
<math>=\frac{-x^4-2x^3+6x^2+12x+6}{(x^3+6)^2}</math><br>
<math>\mathbf{Ex.5}</math><br>
<math>y=\frac{e^x}{1+x^2}\,(1,\frac{e}{2})\,</math><br>
<math>{\frac{d}{dx}}=\frac{e^x\cdot(1+x^2)-e^x(2x)}{(1+x^2)^2}</math><br>
<math>{\frac{d}{dx}}

Revision as of 15:52, 30 March 2023

qQ`



















Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle g(4)=2}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle g^\prime(4)=3}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f^\prime(x)=\frac{1}{2\sqrt{x}}\cdot{g(x)}+\sqrt{x}\cdot{g^\prime(x)}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \mathbf{Ex.4}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle y=\frac{\color{Blue}{x^2+x-2}}{\color{Red}{x^3+6}}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle {\frac{d}{dx}}=y^\prime=\frac{(2x+1)(x^3-6)-\color{Blue}{(x^2+x-2)}(3x^2)}{\color{Red}{(x^3+6)^2}}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle =\frac{(2x^4+x^4+x^3+12x+6-[3x^4+3x^2-6x^2]}{(x^3+6)^2}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle =\frac{-x^4-2x^3+6x^2+12x+6}{(x^3+6)^2}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \mathbf{Ex.5}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle y=\frac{e^x}{1+x^2}\,(1,\frac{e}{2})\,}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle {\frac{d}{dx}}=\frac{e^x\cdot(1+x^2)-e^x(2x)}{(1+x^2)^2}}
<math>{\frac{d}{dx}}