2024/G9/12: Difference between revisions
No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
<math>\mathbf{Chapter 3 Section 2}</math><br> | qQ`<math>\mathbf{Chapter 3 Section 2}</math><br> | ||
<math>{\frac{d}{dx}} [c] = 0 </math> <br> | <math>{\frac{d}{dx}} [c] = 0 </math> <br> | ||
<math>{\frac{d}{dx}} [c\cdot f(x)] = c\cdot{\frac{d}{dx}} [f(x)] </math> <br> | <math>{\frac{d}{dx}} [c\cdot f(x)] = c\cdot{\frac{d}{dx}} [f(x)] </math> <br> | ||
| Line 27: | Line 27: | ||
<math>=\frac{(2x^4+x^4+x^3+12x+6-[3x^4+3x^2-6x^2]}{(x^3+6)^2}</math><br> | <math>=\frac{(2x^4+x^4+x^3+12x+6-[3x^4+3x^2-6x^2]}{(x^3+6)^2}</math><br> | ||
<math>=\frac{-x^4-2x^3+6x^2+12x+6}{(x^3+6)^2}</math><br> | <math>=\frac{-x^4-2x^3+6x^2+12x+6}{(x^3+6)^2}</math><br> | ||
<math>\mathbf{Ex.5}</math><br> | |||
<math>y=\frac{e^x}{1+x^2}\,(1,\frac{e}{2})\,</math><br> | |||
<math>{\frac{d}{dx}}=\frac{e^x\cdot(1+x^2)-e^x(2x)}{(1+x^2)^2}</math><br> | |||
<math>{\frac{d}{dx}} | |||
Revision as of 15:52, 30 March 2023
qQ`
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle g(4)=2}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle g^\prime(4)=3}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f^\prime(x)=\frac{1}{2\sqrt{x}}\cdot{g(x)}+\sqrt{x}\cdot{g^\prime(x)}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \mathbf{Ex.4}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle y=\frac{\color{Blue}{x^2+x-2}}{\color{Red}{x^3+6}}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle {\frac{d}{dx}}=y^\prime=\frac{(2x+1)(x^3-6)-\color{Blue}{(x^2+x-2)}(3x^2)}{\color{Red}{(x^3+6)^2}}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle =\frac{(2x^4+x^4+x^3+12x+6-[3x^4+3x^2-6x^2]}{(x^3+6)^2}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle =\frac{-x^4-2x^3+6x^2+12x+6}{(x^3+6)^2}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \mathbf{Ex.5}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle y=\frac{e^x}{1+x^2}\,(1,\frac{e}{2})\,}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle {\frac{d}{dx}}=\frac{e^x\cdot(1+x^2)-e^x(2x)}{(1+x^2)^2}}
<math>{\frac{d}{dx}}