2024/G9/12: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 23: | Line 23: | ||
<math>f^\prime(x)=\frac{1}{2\sqrt{x}}\cdot{g(x)}+\sqrt{x}\cdot{g^\prime(x)}</math><br> | <math>f^\prime(x)=\frac{1}{2\sqrt{x}}\cdot{g(x)}+\sqrt{x}\cdot{g^\prime(x)}</math><br> | ||
<math>\mathbf{Ex.4}</math><br> | <math>\mathbf{Ex.4}</math><br> | ||
<math>y=\frac{x^2+x-2}{x^3+6}</math><br> | <math>y=\frac{\color{Blue}{x^2+x-2}}{\color{Red}{x^3+6}}</math><br> | ||
<math>{\frac{d}{dx}}=y^\prime=\frac{(2x+1)(x^3-6)-(x^2+x-2)(3x^2)}{(x^3+6)^2}</math><br> | <math>{\frac{d}{dx}}=y^\prime=\frac{(2x+1)(x^3-6)-\color{Blue}{(x^2+x-2)}(3x^2)}{\color{Red}{(x^3+6)^2}}</math><br> | ||
<math>=\frac{(2x^4+x^4+x^3+12x+6-[3x^4+3x^2-6x^2]}{(x^3+6)^2}</math><br> | <math>=\frac{(2x^4+x^4+x^3+12x+6-[3x^4+3x^2-6x^2]}{(x^3+6)^2}</math><br> | ||
<math>=\frac{-x^4-2x^3+6x^2+12x+6}{(x^3+6)^2}</math><br> | <math>=\frac{-x^4-2x^3+6x^2+12x+6}{(x^3+6)^2}</math><br> |
Revision as of 18:13, 29 March 2023