Chris: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
 
Line 3: Line 3:
<math>g(x)= x+2 </math><br>
<math>g(x)= x+2 </math><br>
<math> (f(g)),(f-g),(f+g),({\frac{f}{x}}) </math>
<math> (f(g)),(f-g),(f+g),({\frac{f}{x}}) </math>
===Review===
 
 
==Ch3 Sec2 Review==
<math>{\frac{d}{dx}} [c] = 0 </math> <br>
<math>{\frac{d}{dx}} [c] = 0 </math> <br>
<math>{\frac{d}{dx}} [c\cdot f(x)] = c\cdot{\frac{d}{dx}} [f(x)] </math> <br>
<math>{\frac{d}{dx}} [c\cdot f(x)] = c\cdot{\frac{d}{dx}} [f(x)] </math> <br>


<math>{\frac{d}{dx}} [f(x)\pm g(x)] = {\frac{d}{dx}} [f(x)] \pm {\frac{d}{dx}} [g(x)] </math> <br>
<math>{\frac{d}{dx}} [f(x)\pm g(x)] = {\frac{d}{dx}} [f(x)] \pm {\frac{d}{dx}} [g(x)] </math> <br>
<math> {\frac{d}{dx}} [x^n] = n \cdot x^n-1 </math> <br>
<math>{\frac{d}{dx}} [a^x] = \ln(a)a^x </math><br>
<math> {\frac{d}{dx}} [e^x] = e^x </math><br>
==Ch3 Sec4 ==


===Quotient Rule===
===Point Slope Form===
<math>{\frac{d}{dx}} [{\frac{f}{g}] = F'(x) \cdot g(x) - g'(x) \cdot f{g^2} </math> <br>
<math> y - y_1 = m(x - x_1) </math> <br>
<math>{\frac{d}{dx}} [c] = 0 </math> <br>

Latest revision as of 18:10, 28 March 2023

Je m'appelle Christopher Sanchez.



Ch3 Sec2 Review







Ch3 Sec4

Point Slope Form