Chris: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
(7 intermediate revisions by the same user not shown) | |||
Line 4: | Line 4: | ||
<math> (f(g)),(f-g),(f+g),({\frac{f}{x}}) </math> | <math> (f(g)),(f-g),(f+g),({\frac{f}{x}}) </math> | ||
==Ch3 Sec2 Review== | |||
<math>{\frac{d}{dx}} [c] = 0 </math> <br> | <math>{\frac{d}{dx}} [c] = 0 </math> <br> | ||
<math>{\frac{d}{dx}} [c\cdot f(x)] = c\cdot{\frac{d}{dx}} [f(x)] </math> <br> | <math>{\frac{d}{dx}} [c\cdot f(x)] = c\cdot{\frac{d}{dx}} [f(x)] </math> <br> | ||
<math>{\frac{d}{dx}} [f(x)\pm g(x)] = {\frac{d}{dx}} [f(x)] \pm {\frac{d}{dx}} [g(x)] </math> <br> | <math>{\frac{d}{dx}} [f(x)\pm g(x)] = {\frac{d}{dx}} [f(x)] \pm {\frac{d}{dx}} [g(x)] </math> <br> | ||
<math>{\frac{d}{dx}} [ | <math> {\frac{d}{dx}} [x^n] = n \cdot x^n-1 </math> <br> | ||
<math>{\frac{d}{dx}} [ | <math>{\frac{d}{dx}} [a^x] = \ln(a)a^x </math><br> | ||
<math> {\frac{d}{dx}} [e^x] = e^x </math><br> | |||
==Ch3 Sec4 == | |||
===Point Slope Form=== | |||
<math> y - y_1 = m(x - x_1) </math> <br> |
Latest revision as of 18:10, 28 March 2023
Je m'appelle Christopher Sanchez.
Ch3 Sec2 Review
Ch3 Sec4
Point Slope Form