Chris: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 3: Line 3:
<math>g(x)= x+2 </math><br>
<math>g(x)= x+2 </math><br>
<math> (f(g)),(f-g),(f+g),({\frac{f}{x}}) </math>
<math> (f(g)),(f-g),(f+g),({\frac{f}{x}}) </math>
 
===Review===
<math>{\frac{d}{dx}} [c] = 0 </math> <br>
<math>{\frac{d}{dx}} [c] = 0 </math> <br>
<math>{\frac{d}{dx}} [c\cdot f(x)] = c\cdot{\frac{d}{dx}} [f(x)] </math> <br>
<math>{\frac{d}{dx}} [c\cdot f(x)] = c\cdot{\frac{d}{dx}} [f(x)] </math> <br>


<math>{\frac{d}{dx}} [f(x)\pm g(x)] = {\frac{d}{dx}} [f(x)] \pm {\frac{d}{dx}} [g(x)] </math> <br>
<math>{\frac{d}{dx}} [f(x)\pm g(x)] = {\frac{d}{dx}} [f(x)] \pm {\frac{d}{dx}} [g(x)] </math> <br>
<math>{\frac{d}{dx}} [c] = 0 </math> <br>
 
===Quotient Rule===
<math>{\frac{d}{dx}} [{\frac{f}{g}}] = F'(x) \cdot g(x) - g'(x) \cdot {\frac{f}{g^2}} </math> <br>
<math>{\frac{d}{dx}} [c] = 0 </math> <br>
<math>{\frac{d}{dx}} [c] = 0 </math> <br>

Revision as of 17:13, 28 March 2023

Je m'appelle Christopher Sanchez.


Review




Quotient Rule