7.1 Integration By Parts/28: Difference between revisions
No edit summary |
No edit summary |
||
| Line 8: | Line 8: | ||
\int_{1}^{2}\frac{\ln{x}^2}{x^3} = -\frac{\ln^2{(x)}}{2x^2} - \int-\frac{\ln{(x)}}{x^3} & = -\frac{\ln^2{(x)}}{2x^2} + \int\frac{\ln{(x)}}{x^3}\\[2ex] | \int_{1}^{2}\frac{\ln{x}^2}{x^3} = -\frac{\ln^2{(x)}}{2x^2} - \int-\frac{\ln{(x)}}{x^3} & = -\frac{\ln^2{(x)}}{2x^2} + \int\frac{\ln{(x)}}{x^3}\\[2ex] | ||
u = | & u = \ln{(x)} \qquad dv = \frac{1}{x^3} | ||
& du = \frac{1}{x} \qquad v = -\frac{1}{2x^2} | |||
Revision as of 22:22, 16 December 2022
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int_{1}^{2}\frac{(\ln{x})^2}{x^3} }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle du = \frac{2\ln{(x)}}{x} \qquad v = -\frac{1}{2x^2} }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \int_{1}^{2}\frac{\ln{x}^2}{x^3} = -\frac{\ln^2{(x)}}{2x^2} - \int-\frac{\ln{(x)}}{x^3} & = -\frac{\ln^2{(x)}}{2x^2} + \int\frac{\ln{(x)}}{x^3}\\[2ex] & u = \ln{(x)} \qquad dv = \frac{1}{x^3} & du = \frac{1}{x} \qquad v = -\frac{1}{2x^2} & = -\frac{\ln{(x)}}{2x^2} - \frac{1}{2}\int\frac{1}{x^3} \\[2ex] & = -\frac{\ln{(x)}}{2x^2} - \frac{1}{4x^2} \end{align} }