7.1 Integration By Parts/13: Difference between revisions
Jump to navigation
Jump to search
Andy Arevalo (talk | contribs) No edit summary |
No edit summary |
||
(4 intermediate revisions by one other user not shown) | |||
Line 1: | Line 1: | ||
<math>\int t\sec^2\left(2t\right) dt </math> | <math>\int t\sec^2\left(2t\right) dt </math> | ||
<math>u = t \qquad dv = \sec^2\left(2t\right) | <math>u = t \qquad dv = \sec^2\left(2t\right) </math> <br><br> | ||
<math>du = dt \qquad v = \frac{1}{2}\tan\left(2t\right)</math> | <math>du = dt \qquad v = \frac{1}{2}\tan\left(2t\right)</math> | ||
<math> | <math> | ||
= \frac{1}{2}\tan\left(2t\right)-\frac{1}{2}\int\tan\left(2t\right)dt = \frac{1}{2}\tan\left(2t\right)-\frac{1}{4}\int\tan\left(u\right)du = \frac{1}{2}\tan\left(2t\right)-\frac{1}{4}\ln|\sec2t|+c | \int t\sec^2\left(2t\right) dt = \frac{1}{2}\tan\left(2t\right)-\frac{1}{2}\int\tan\left(2t\right)dt = \frac{1}{2}\tan\left(2t\right)-\frac{1}{4}\int\tan\left(u\right)du = \frac{1}{2}\tan\left(2t\right)-\frac{1}{4}\ln|\sec2t|+c | ||
</math> | |||
<math> | <math> |
Latest revision as of 21:48, 16 December 2022