7.1 Integration By Parts/13: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
 
(14 intermediate revisions by one other user not shown)
Line 1: Line 1:
<math>\int t\sec^2\left(2t\right) dt </math>
<math>\int t\sec^2\left(2t\right) dt </math>


<math>u = t \qquad dv = \sec^2\left(2t\right) \qquad & = \int\sec^2\left(2t\right)dt \\[2ex]
<math>u = t \qquad dv = \sec^2\left(2t\right) </math> <br><br>
&= \frac{1}{2}\int\sec^2\left(u\right)du \\[2ex] </math>
<math>du = dt \qquad v = \frac{1}{2}\tan\left(2t\right)</math>
<math>du = dt \qquad v = \frac{1}{2}\tan\left(2t\right)</math>
<math>
\int t\sec^2\left(2t\right) dt = \frac{1}{2}\tan\left(2t\right)-\frac{1}{2}\int\tan\left(2t\right)dt = \frac{1}{2}\tan\left(2t\right)-\frac{1}{4}\int\tan\left(u\right)du = \frac{1}{2}\tan\left(2t\right)-\frac{1}{4}\ln|\sec2t|+c
</math>
<math>
\begin{align}
& u=2t \\[2ex]
& du=2dt \\[2ex]
& \frac{du}{2}=dt \\[2ex]
\end{align}
</math>

Latest revision as of 21:48, 16 December 2022