6.5 Average Value of a Function/5: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
 
(11 intermediate revisions by the same user not shown)
Line 1: Line 1:
<math>
<math>
f(t) = te^{-t^2} \quad [0, 5] \\
f(t) = te^{-t^2} \quad [0, 5]
</math>


<math>
\begin{align}
\begin{align}
f_{avg} = \frac{1}{5}\int_{0}^{5}te^{-t^2}\,dx \\[2ex]
f_{avg} &= \frac{1}{5}\int_{0}^{5}te^{-t^2}\,dx = \frac{1}{5}\int_{0}^{5}-\frac{1}{2}(e^u)\,du \\[2ex]  
& = \frac{1}{5}\int_{0}^{5}-\frac{1}{2}(e^u)\,du \\[2ex]
&= \frac{1}{5}\int_{0}^{25}e^u(-\frac{1}{2}du) = \frac{1}{10}\int_{-25}^{0}e^u\,du  \\[2ex]  
& = \frac{1}{5}\int_{0}^{25}e^u(-\frac{1}{2}du) \\[2ex]
& = \frac{1}{10}\int_{-25}^{0}e^u\,du  \\[2ex]
& = \frac{1}{10}e^u \bigg|_{-25}^{0}  \\[2ex]
& = \frac{1}{10}-\frac{1}{10}e^{-25}  \\[2ex]
& = \frac{1}{10}(1-e^{-25}) \\[2ex]


&= \frac{1}{10}e^u \bigg|_{-25}^{0} = \frac{1}{10}-\frac{1}{10}e^{-25} = \frac{1}{10}(1-e^{-25}) \\[2ex]
\end{align}
</math>
<math>
\begin{align}
& u=t^2 \\[2ex]
& \frac{du}{dt}=2t \\[2ex]
& du=-2t\cdot{dt} \\[2ex]
& -\frac{1}{2}du=t\cdot{dt} \\[2ex]
\end{align}
\end{align}
   
   
</math>
</math>

Latest revision as of 19:46, 16 December 2022