6.5 Average Value of a Function/5: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 5: Line 5:
<math>
<math>
\begin{align}
\begin{align}
f_{avg} = \frac{1}{5}\int_{0}^{5}te^{-t^2}\,dx  \\[2ex]
f_{avg} &= \frac{1}{5}\int_{0}^{5}te^{-t^2}\,dx  \\[2ex]
& = \frac{1}{5}\int_{0}^{5}-\frac{1}{2}(e^u)\,du  \\[2ex]
& = \frac{1}{5}\int_{0}^{5}-\frac{1}{2}(e^u)\,du  \\[2ex]
& = \frac{1}{5}\int_{0}^{25}e^u(-\frac{1}{2}du)  \\[2ex]
& = \frac{1}{5}\int_{0}^{25}e^u(-\frac{1}{2}du)  \\[2ex]

Revision as of 19:32, 16 December 2022

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f(t) = te^{-t^2} \quad [0, 5] }

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} f_{avg} &= \frac{1}{5}\int_{0}^{5}te^{-t^2}\,dx \\[2ex] & = \frac{1}{5}\int_{0}^{5}-\frac{1}{2}(e^u)\,du \\[2ex] & = \frac{1}{5}\int_{0}^{25}e^u(-\frac{1}{2}du) \\[2ex] & = \frac{1}{10}\int_{-25}^{0}e^u\,du \\[2ex] & = \frac{1}{10}e^u \bigg|_{-25}^{0} \\[2ex] & = \frac{1}{10}-\frac{1}{10}e^{-25} \\[2ex] & = \frac{1}{10}(1-e^{-25}) \\[2ex] \end{align} }