6.5 Average Value of a Function/5: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<math> | <math> | ||
f(t) = te^{-t^2} \quad [0, 5] | f(t) = te^{-t^2} \quad [0, 5] \\ | ||
\begin{align} | |||
f_{avg} = \frac{1}{5}\int_{0}^{5}te^{-t^2}\,dx = \frac{1}{5}\int_{0}^{5}-\frac{1}{2}(e^u)\,du = \frac{1}{5}\int_{0}^{25}e^u(-\frac{1}{2}du) = \frac{1}{10}\int_{-25}^{0}e^u\,du = \frac{1}{10}e^u \bigg|_{-25}^{0} = \frac{1}{10}-\frac{1}{10}e^{-25} = \frac{1}{10}(1-e^{-25}) | |||
\end{align} | |||
</math> | </math> |
Revision as of 18:57, 16 December 2022
Failed to parse (syntax error): {\displaystyle f(t) = te^{-t^2} \quad [0, 5] \\ \begin{align} f_{avg} = \frac{1}{5}\int_{0}^{5}te^{-t^2}\,dx = \frac{1}{5}\int_{0}^{5}-\frac{1}{2}(e^u)\,du = \frac{1}{5}\int_{0}^{25}e^u(-\frac{1}{2}du) = \frac{1}{10}\int_{-25}^{0}e^u\,du = \frac{1}{10}e^u \bigg|_{-25}^{0} = \frac{1}{10}-\frac{1}{10}e^{-25} = \frac{1}{10}(1-e^{-25}) \end{align} }