6.5 Average Value of a Function/5: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
<math>
<math>
f(t) = te^{-t^2} \quad [0, 5]  
f(t) = te^{-t^2} \quad [0, 5] \\
 
\begin{align}
f_{avg} = \frac{1}{5}\int_{0}^{5}te^{-t^2}\,dx = \frac{1}{5}\int_{0}^{5}-\frac{1}{2}(e^u)\,du = \frac{1}{5}\int_{0}^{25}e^u(-\frac{1}{2}du) = \frac{1}{10}\int_{-25}^{0}e^u\,du = \frac{1}{10}e^u \bigg|_{-25}^{0} = \frac{1}{10}-\frac{1}{10}e^{-25} = \frac{1}{10}(1-e^{-25})
 
\end{align}
</math>
</math>

Revision as of 18:57, 16 December 2022

Failed to parse (syntax error): {\displaystyle f(t) = te^{-t^2} \quad [0, 5] \\ \begin{align} f_{avg} = \frac{1}{5}\int_{0}^{5}te^{-t^2}\,dx = \frac{1}{5}\int_{0}^{5}-\frac{1}{2}(e^u)\,du = \frac{1}{5}\int_{0}^{25}e^u(-\frac{1}{2}du) = \frac{1}{10}\int_{-25}^{0}e^u\,du = \frac{1}{10}e^u \bigg|_{-25}^{0} = \frac{1}{10}-\frac{1}{10}e^{-25} = \frac{1}{10}(1-e^{-25}) \end{align} }