7.1 Integration By Parts/65: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
(Created page with "<math> \begin{align} \int_{1}^{4}xf''(x)dx\\[2ex] u=x\qquad dv=f''\cdot\;(x)\qquad \\[2ex] du=dx\qquad v=f'(x)\qquad \\[2ex] x\cdot\;f'(x)\bigg|_{1}^{4}-\int_{1}^{4}f'(x)dx &= x\cdot\;f'(x)-f(x)\bigg|_{1}^{4}\\[2ex] &= (4\cdot\;f'(x)-f(4))-(1\cdot\;f'(1)-r(1))\\[2ex] &= (4\cdot\;3-7)-(5-2) \\[2ex] &= (12-7)-(3)\\[2ex] &=(5)-(3)\\[2ex] &=2 \end{align} </math>")
 
No edit summary
 
(3 intermediate revisions by the same user not shown)
Line 3: Line 3:


\int_{1}^{4}xf''(x)dx\\[2ex]
\int_{1}^{4}xf''(x)dx\\[2ex]
u=x\qquad dv=f''\cdot\;(x)\qquad \\[2ex]
u=x\qquad dv=f''(x)\cdot\;(dx)\qquad \\[2ex]
du=dx\qquad v=f'(x)\qquad \\[2ex]
du=dx\qquad v=f'(x)\qquad \\[2ex]


x\cdot\;f'(x)\bigg|_{1}^{4}-\int_{1}^{4}f'(x)dx &= x\cdot\;f'(x)-f(x)\bigg|_{1}^{4}\\[2ex]
\int_{1}^{4}xf''(x)dx&=x\cdot\;f'(x)\bigg|_{1}^{4}-\int_{1}^{4}f'(x)dx \\[2ex]


&= (4\cdot\;f'(x)-f(4))-(1\cdot\;f'(1)-r(1))\\[2ex]
&= x\cdot\;f'(x)-f(x)\bigg|_{1}^{4}\\[2ex]
 
&= (4\cdot\;f'(4)-f(4))-(1\cdot\;f'(1)-f(1))\\[2ex]


&= (4\cdot\;3-7)-(5-2) \\[2ex]
&= (4\cdot\;3-7)-(5-2) \\[2ex]

Latest revision as of 10:49, 16 December 2022