7.1 Integration By Parts/65: Difference between revisions
Jump to navigation
Jump to search
(Created page with "<math> \begin{align} \int_{1}^{4}xf''(x)dx\\[2ex] u=x\qquad dv=f''\cdot\;(x)\qquad \\[2ex] du=dx\qquad v=f'(x)\qquad \\[2ex] x\cdot\;f'(x)\bigg|_{1}^{4}-\int_{1}^{4}f'(x)dx &= x\cdot\;f'(x)-f(x)\bigg|_{1}^{4}\\[2ex] &= (4\cdot\;f'(x)-f(4))-(1\cdot\;f'(1)-r(1))\\[2ex] &= (4\cdot\;3-7)-(5-2) \\[2ex] &= (12-7)-(3)\\[2ex] &=(5)-(3)\\[2ex] &=2 \end{align} </math>") |
No edit summary |
||
Line 8: | Line 8: | ||
x\cdot\;f'(x)\bigg|_{1}^{4}-\int_{1}^{4}f'(x)dx &= x\cdot\;f'(x)-f(x)\bigg|_{1}^{4}\\[2ex] | x\cdot\;f'(x)\bigg|_{1}^{4}-\int_{1}^{4}f'(x)dx &= x\cdot\;f'(x)-f(x)\bigg|_{1}^{4}\\[2ex] | ||
&= (4\cdot\;f'(x)-f(4))-(1\cdot\;f'(1)- | &= (4\cdot\;f'(x)-f(4))-(1\cdot\;f'(1)-f(1))\\[2ex] | ||
&= (4\cdot\;3-7)-(5-2) \\[2ex] | &= (4\cdot\;3-7)-(5-2) \\[2ex] |
Revision as of 09:45, 16 December 2022