5.5 The Substitution Rule/33: Difference between revisions
No edit summary |
No edit summary |
||
| Line 17: | Line 17: | ||
&= - \int{(\sqrt{u})}du \\[2ex] | &= - \int{(\sqrt{u})}du \\[2ex] | ||
&= \int (u^{\frac{1}{2}})du \\[2ex] | &= \int (u^{\frac{1}{2}})du \\[2ex] | ||
&= -\frac{2}{3} u + | &= -\frac{2}{3} u + C \\[2ex] | ||
&= -\frac{2}{3} (\cot{(x)})^{\frac{3}{2}} +C | &= -\frac{2}{3} (\cot{(x)})^{\frac{3}{2}} +C | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
Revision as of 09:19, 16 December 2022
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int {\sqrt{\cot(x)}} \csc^2{(x)}dx }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} u &= \cot{(x)} \\[2ex] du &= -csc^2{(x)}dx \\[2ex] -du &= csc^2{(x)}dx \\[2ex] \end{align} }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} &= - \int{(\sqrt{u})}du \\[2ex] &= \int (u^{\frac{1}{2}})du \\[2ex] &= -\frac{2}{3} u + C \\[2ex] &= -\frac{2}{3} (\cot{(x)})^{\frac{3}{2}} +C \end{align} }