7.1 Integration By Parts/13: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 6: Line 6:
<math>  
<math>  
= \frac{1}{2}\tan\left(2t\right)-\frac{1}{2}\int\tan\left(2t\right)dt = \frac{1}{2}\tan\left(2t\right)-\frac{1}{4}\int\tan\left(u\right)du = \frac{1}{2}\tan\left(2t\right)-\frac{1}{4}\ln|\sec2t|+c
= \frac{1}{2}\tan\left(2t\right)-\frac{1}{2}\int\tan\left(2t\right)dt = \frac{1}{2}\tan\left(2t\right)-\frac{1}{4}\int\tan\left(u\right)du = \frac{1}{2}\tan\left(2t\right)-\frac{1}{4}\ln|\sec2t|+c
<math>
<math>
\begin{align}
\begin{align}


& u=2t
& u=2t \\[2ex]
& du=2dt
& du=2dt \\[2ex]
& \frac{du}{2}=dt
& \frac{du}{2}=dt \\[2ex]


\end{align}
\end{align}
</math>
</math>

Revision as of 05:34, 16 December 2022

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle u = t \qquad dv = \sec^2\left(2t\right) \qquad \int\sec^2\left(2t\right)dt }

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle du = dt \qquad v = \frac{1}{2}\tan\left(2t\right)}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle = \frac{1}{2}\tan\left(2t\right)-\frac{1}{2}\int\tan\left(2t\right)dt = \frac{1}{2}\tan\left(2t\right)-\frac{1}{4}\int\tan\left(u\right)du = \frac{1}{2}\tan\left(2t\right)-\frac{1}{4}\ln|\sec2t|+c <math> \begin{align} & u=2t \\[2ex] & du=2dt \\[2ex] & \frac{du}{2}=dt \\[2ex] \end{align} }