7.1 Integration By Parts/25: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
(Created page with "<math> \int_{0}^{1}\frac{y}{e^{2y}}dy u=y, -du=dy, dv=\frac{dy}{e^{2}y} &=e^{-2y}dy, v=\frac{-1}{2}e^{-2y} </math> <math> \begin{align} \int_{0}^{1}\frac{y}{e^{2y}}dy &=\left[\frac{-1}{2}ye^{-2y}\right]\bigg|_{0}^{1} + \frac{1}{2}\int_{0}{1}e^{-2y}dy \\[2ex] &= \left(\frac{-1}{2}e^{-2}+0\right)-\frac{1}{4}\left[e^{-2y}\right]\bigg|_{0}^(1) \\[2ex] &= \frac{-1}{2}e^{-2}-\frac{1}{4}e^{-2}+\frac{1}{4} \\[2ex] &= \frac{1}{4}-\frac{3}{4}e^{-2} \\[2ex] \end{align} </math>")
 
No edit summary
 
(4 intermediate revisions by the same user not shown)
Line 1: Line 1:
<math>
<math>
\int_{0}^{1}\frac{y}{e^{2y}}dy
\int_{0}^{1}\frac{y}{e^{2y}}dy  
u=y, -du=dy,
dv=\frac{dy}{e^{2}y} &=e^{-2y}dy, v=\frac{-1}{2}e^{-2y}
</math>
</math>
<math>
u=y \qquad du=dy
</math> <br><br>
<math>
dv=\frac{dy}{e^{2}y}=e^{-2y}dy \qquad v=\frac{-1}{2}e^{-2y}
</math>


<math>
<math>
Line 10: Line 17:
\int_{0}^{1}\frac{y}{e^{2y}}dy &=\left[\frac{-1}{2}ye^{-2y}\right]\bigg|_{0}^{1} + \frac{1}{2}\int_{0}{1}e^{-2y}dy \\[2ex]
\int_{0}^{1}\frac{y}{e^{2y}}dy &=\left[\frac{-1}{2}ye^{-2y}\right]\bigg|_{0}^{1} + \frac{1}{2}\int_{0}{1}e^{-2y}dy \\[2ex]


&= \left(\frac{-1}{2}e^{-2}+0\right)-\frac{1}{4}\left[e^{-2y}\right]\bigg|_{0}^(1) \\[2ex]
&= \left(\frac{-1}{2}e^{-2}+0\right)-\frac{1}{4}\left[e^{-2y}\right]\bigg|_{0}^{1} \\[2ex]
&= \frac{-1}{2}e^{-2}-\frac{1}{4}e^{-2}+\frac{1}{4} \\[2ex]
&= \frac{-1}{2}e^{-2}-\frac{1}{4}e^{-2}+\frac{1}{4} \\[2ex]
&= \frac{1}{4}-\frac{3}{4}e^{-2} \\[2ex]
&= \frac{1}{4}-\frac{3}{4}e^{-2} \\[2ex]

Latest revision as of 18:11, 13 December 2022