7.1 Integration By Parts/25: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
<math>
<math>
\int_{0}^{1}\frac{y}{e^{2y}}dy
\begin{align}
u=y, -du=dy,  
\int_{0}^{1}\frac{y}{e^{2y}}dy,
dv=\frac{dy}{e^{2}y}=e^{-2y}dy, v=\frac{-1}{2}e^{-2y}
& u=y, -du=dy,  
& dv=\frac{dy}{e^{2}y}=e^{-2y}dy, v=\frac{-1}{2}e^{-2y}
\end{align}
</math>
</math>


Line 10: Line 12:
\int_{0}^{1}\frac{y}{e^{2y}}dy &=\left[\frac{-1}{2}ye^{-2y}\right]\bigg|_{0}^{1} + \frac{1}{2}\int_{0}{1}e^{-2y}dy \\[2ex]
\int_{0}^{1}\frac{y}{e^{2y}}dy &=\left[\frac{-1}{2}ye^{-2y}\right]\bigg|_{0}^{1} + \frac{1}{2}\int_{0}{1}e^{-2y}dy \\[2ex]


&= \left(\frac{-1}{2}e^{-2}+0\right)-\frac{1}{4}\left[e^{-2y}\right]\bigg|_{0}^(1) \\[2ex]
&= \left(\frac{-1}{2}e^{-2}+0\right)-\frac{1}{4}\left[e^{-2y}\right]\bigg|_{0}^{1} \\[2ex]
&= \frac{-1}{2}e^{-2}-\frac{1}{4}e^{-2}+\frac{1}{4} \\[2ex]
&= \frac{-1}{2}e^{-2}-\frac{1}{4}e^{-2}+\frac{1}{4} \\[2ex]
&= \frac{1}{4}-\frac{3}{4}e^{-2} \\[2ex]
&= \frac{1}{4}-\frac{3}{4}e^{-2} \\[2ex]

Revision as of 17:58, 13 December 2022