6.2 Volumes/15: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
(Created page with "<math> x=y^2, x=1; \text{about x=1} </math> <math> \begin{align} \pi\int_-1^1\left(1-y^2\right)^2 dy &= \pi\int_-1^1\left(1-2y^2+y^4\right)dy \\[2ex] &= \pi\left[y-\frac{2}{3}y^3+\frac{y^5}{5}\right]\Bigg|_-1^1 \\[2ex] &= \pi\left[1+\frac{2}{3}+\frac{1}{5}\right]- \pileft[-1+\frac{2}{5}-\frac{1}{5}\right] \\[2ex] &= \frac{16\pi}{15} \end{align} </math>")
 
No edit summary
 
(4 intermediate revisions by the same user not shown)
Line 6: Line 6:
<math>
<math>
\begin{align}
\begin{align}
\pi\int_-1^1\left(1-y^2\right)^2 dy &= \pi\int_-1^1\left(1-2y^2+y^4\right)dy \\[2ex]
\pi\int_{-1}^{1}\left(1-y^2\right)^{2} dy & = \pi\int_{-1}^{1}\left(1-2y^2+y^4\right)dy \\[2ex]


&= \pi\left[y-\frac{2}{3}y^3+\frac{y^5}{5}\right]\Bigg|_-1^1 \\[2ex]
&= \pi\left[y-\frac{2}{3}y^3+\frac{y^5}{5}\right]\Bigg|_{-1}^{1} \\[2ex]
&= \pi\left[1+\frac{2}{3}+\frac{1}{5}\right]- \pileft[-1+\frac{2}{5}-\frac{1}{5}\right] \\[2ex]
&= \pi\left[1+\frac{2}{3}+\frac{1}{5}\right]- \pi\left[-1+\frac{2}{5}-\frac{1}{5}\right] \\[2ex]
&= \frac{16\pi}{15}
&= \frac{16\pi}{15}


\end{align}
\end{align}
</math>
</math>

Latest revision as of 17:14, 13 December 2022