7.1 Integration By Parts/54: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
 
(3 intermediate revisions by the same user not shown)
Line 2: Line 2:
<math>
<math>


y=5\ln(x) , y=x\ln(x)
y={ \color{OliveGreen}5\ln(x) }, y={ \color{Red}x\ln(x)}


</math>
</math>
Line 38: Line 38:


<math>
<math>
{\color{RedOrange}\int_{1}^{5} \left(x\ln(x) \right)dx }= \frac{x^2\ln(x)}{2}\bigg|_{1}^{5} - \int_{1}^{5} \left(\frac{x^2}{2x} \right)dx = \frac{x^2\ln(x)}{2}\bigg|_{1}^{5} - \frac{1}{2}\int_{1}^{5} \left(x \right)dx = \frac{1\ln(1)}{2}-\frac{25\ln(5)}{2} -\left(\frac{1}{2}\right) \left( \frac{x^2}{2} \right) \bigg|_{1}^{5} = 0-\frac{25}{2}\ln(5) -\frac{1}{2}\left(\frac{25-1}{2}\right) = \frac{25}{2}\ln(5) - 6
{\color{RedOrange}\int_{1}^{5} \left(x\ln(x) \right)dx }= \frac{x^2\ln(x)}{2}\bigg|_{1}^{5} - \int_{1}^{5} \left(\frac{x^2}{2x} \right)dx = \frac{x^2\ln(x)}{2}\bigg|_{1}^{5} - \frac{1}{2}\int_{1}^{5} \left(x \right)dx = \frac{1\ln(1)}{2}-\frac{25\ln(5)}{2} -\left(\frac{1}{2}\right) \left( \frac{x^2}{2} \right) \bigg|_{1}^{5} = 0-\frac{25}{2}\ln(5) -\left(\frac{25-1}{4}\right) = \frac{25}{2}\ln(5) - 6


</math>
</math>

Latest revision as of 17:18, 12 December 2022

54.png

When ,