7.1 Integration By Parts/54: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
 
(71 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[File:54.png|right|150px|]]
<math>
<math>


y=5\ln(x) , y=x\ln(x)
y={ \color{OliveGreen}5\ln(x) }, y={ \color{Red}x\ln(x)}


</math>
</math>


<math>
<math>  
\begin{align}
\begin{align}


Line 12: Line 13:
&x=1 \\[1ex]
&x=1 \\[1ex]


\end{align}
</math>
When <math> x=2 </math>,
<math>
5\ln(2) > 2\ln(2)
5\ln(2) > 2\ln(2)
</math>
<math>
\int_{1}^{5}\left(5\ln(x) -x\ln(x) \right)dx = {\color{NavyBlue}\int_{1}^{5} \left(5\ln(x) \right)dx} - {\color{RedOrange}\int_{1}^{5} \left(x\ln(x) \right)dx } =25\ln(5)-20 - \left(\frac{25}{2}\ln(5) - 6 \right) = \frac{25}{2} \ln(5) -14
</math>
<math>
\begin{align}
{\color{NavyBlue}\int_{1}^{5} \left(5\ln(x) \right)dx } &= 5 \int_{1}^{5} \left(\ln(x) \right)dx = 5\left(x\ln(x)\bigg|_{1}^{5}- \int_{1}^{5} \left(\frac{x}{x} \right)dx \right) = 5\left(x\ln(x) \bigg|_{1}^{5}- x \bigg|_{1}^{5} \right) = 5\left(5\ln(5)-1\ln(1) - \left(5-1 \right) \right) = 25\ln(5)-20 \\[2ex]
u &= \ln(x) \quad dv= 1 dx \\ [2ex]
du &= \frac{1}{x} dx \quad  v=x \\ [2ex]


\end{align}
\end{align}
Line 18: Line 38:


<math>
<math>
{\color{RedOrange}\int_{1}^{5} \left(x\ln(x) \right)dx }= \frac{x^2\ln(x)}{2}\bigg|_{1}^{5} - \int_{1}^{5} \left(\frac{x^2}{2x} \right)dx = \frac{x^2\ln(x)}{2}\bigg|_{1}^{5} - \frac{1}{2}\int_{1}^{5} \left(x \right)dx = \frac{1\ln(1)}{2}-\frac{25\ln(5)}{2} -\left(\frac{1}{2}\right) \left( \frac{x^2}{2} \right) \bigg|_{1}^{5} = 0-\frac{25}{2}\ln(5) -\left(\frac{25-1}{4}\right) = \frac{25}{2}\ln(5) - 6
</math>
<math>
\begin{align}
u &= \ln(x) \quad dv= x dx \\
du &= \frac{1}{x} \quad v=\frac{x^2}{2} \\


\int_{a}^{b}\left(5\ln(x) -x\ln(x) \right)dx
\end{align}
\int_{a}^{b} \left(5\ln(x) \right)dx - \int_{a}^{b} \left(x\ln(x) \right)


</math>
</math>

Latest revision as of 17:18, 12 December 2022

54.png

When ,