7.1 Integration By Parts/24: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 16: Line 16:
du&=6x \quad \quad v=-\cos(x)
du&=6x \quad \quad v=-\cos(x)
\end{aligned}}
\end{aligned}}
\,dx= x^3\sin(x)-[3x^2-\cos(x)-\int_{0}^{\pi}-6x\cos(x)\,dx]\\
\,dx= x^3\sin(x)-\bigg[3x^2-\cos(x)-\int_{0}^{\pi}-6x\cos(x)\,dx\bigg]\\
=&x^3\sin(x)-3x^2\cos(x)-\int_{0}^{\pi}6x\cos(x)
=&x^3\sin(x)-3x^2\cos(x)-\int_{0}^{\pi}\underbrace{6x\cos(x)}_{
\begin{aligned}
u&=6x \quad \quad dv=cos(x) \\
du&=6 \quad \quad v=sin(x)
\end{aligned}}
=x^3\sin(x)+3x^2\cos(x)-\bigg[6x\sin(x)-\int_{0}^{\pi} 6\sin(x)\,dx\bigg]
\end{align}
\end{align}
</math>
</math>

Revision as of 20:09, 1 December 2022