7.1 Integration By Parts/24: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 16: | Line 16: | ||
du&=6x \quad \quad v=-\cos(x) | du&=6x \quad \quad v=-\cos(x) | ||
\end{aligned}} | \end{aligned}} | ||
\,dx= x^3\sin(x)-[3x^2-\cos(x)-\int_{0}^{\pi}-6x\cos(x)\,dx]\\ | \,dx= x^3\sin(x)-\bigg[3x^2-\cos(x)-\int_{0}^{\pi}-6x\cos(x)\,dx\bigg]\\ | ||
=&x^3\sin(x)-3x^2\cos(x)-\int_{0}^{\pi}6x\cos(x) | =&x^3\sin(x)-3x^2\cos(x)-\int_{0}^{\pi}\underbrace{6x\cos(x)}_{ | ||
\begin{aligned} | |||
u&=6x \quad \quad dv=cos(x) \\ | |||
du&=6 \quad \quad v=sin(x) | |||
\end{aligned}} | |||
=x^3\sin(x)+3x^2\cos(x)-\bigg[6x\sin(x)-\int_{0}^{\pi} 6\sin(x)\,dx\bigg] | |||
\end{align} | \end{align} | ||
</math> | </math> |
Revision as of 20:09, 1 December 2022