7.1 Integration By Parts/49: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
(10 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
Prove | Prove | ||
<math> | <math> | ||
\int_{}^{} \left(\tan^{n}(x)\right)dx =\frac{\tan^{n-1}x}{n-1} - \int_{}^{} \left(\tan^{n-2}x\right)dx | \int_{}^{} \left(\tan^{n}(x)\right)dx =\frac{\tan^{n-1}x}{n-1} - \int_{}^{} \left(\tan^{n-2}x\right)dx | ||
</math> | |||
Note: | |||
<math> | |||
\begin{align} | |||
\tan^{2}(x) = \sec^{2}(x)-1 | |||
\end{align} | |||
</math> | </math> | ||
Line 8: | Line 14: | ||
\int_{}^{} \left(\tan^{n}(x)\right)dx = \int_{}^{} \left((\tan^{2}x)(\tan^{n-2}x)\right)dx = \int_{}^{} (\sec^{2}(x)-1)\tan^{n-2}(x) dx | \int_{}^{} \left(\tan^{n}(x)\right)dx = \int_{}^{} \left((\tan^{2}x)(\tan^{n-2}x)\right)dx = \int_{}^{} (\sec^{2}(x)-1)\tan^{n-2}(x) dx | ||
= \int_{}^{} (\sec^{2}x)(\tan^{n-2}x)-\tan^{n-2}xdx | = \int_{}^{} (\sec^{2}x)(\tan^{n-2}x)-\tan^{n-2}xdx | ||
= \int_{}^{} (\sec^{2}x)(\tan^{n-2}x) -\int_{}^{}\tan^{n-2} | = \int_{}^{} (\sec^{2}x)(\tan^{n-2}x) -\int_{}^{}\tan^{n-2}(x)dx | ||
</math> | </math> | ||
Line 43: | Line 49: | ||
</math> | </math> | ||
<math> | <math> | ||
\begin{align} | \begin{align} | ||
\tan^{ | |||
\frac{\tan^{n-1}(x)}{n-1} = \frac{(n-1)}{n-1} \int_{}^{} (\sec^{2}x)(\tan^{n-2}x)dx | |||
\end{align} | |||
</math> | |||
Bring down: | |||
<math> | |||
\begin{align} | |||
-\int_{}^{}\tan^{n-2}(x)dx | |||
\end{align} | |||
</math> | |||
<math> | |||
\begin{align} | |||
= \frac{\tan^{n-1}(x)}{n-1} -\int_{}^{}\tan^{n-2}(x)dx | |||
\end{align} | \end{align} | ||
</math> | </math> |
Latest revision as of 04:36, 30 November 2022
Prove
Note:
Solving for
Bring down: