7.1 Integration By Parts/49: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
 
(24 intermediate revisions by the same user not shown)
Line 1: Line 1:
Prove
Prove
<math>
<math>
\int_{}^{} \left(\tan^{n}(x)\right)dx =\frac{\tan^{n-1}x}{n-1} - \int_{}^{} \left(\tan^{n-2}x\right)dx
\int_{}^{} \left(\tan^{n}(x)\right)dx =\frac{\tan^{n-1}x}{n-1} - \int_{}^{} \left(\tan^{n-2}x\right)dx  
</math>


Note:
<math>
\begin{align}
\tan^{2}(x) = \sec^{2}(x)-1
\end{align}
</math>
</math>


Line 8: Line 14:
\int_{}^{} \left(\tan^{n}(x)\right)dx = \int_{}^{} \left((\tan^{2}x)(\tan^{n-2}x)\right)dx = \int_{}^{} (\sec^{2}(x)-1)\tan^{n-2}(x) dx
\int_{}^{} \left(\tan^{n}(x)\right)dx = \int_{}^{} \left((\tan^{2}x)(\tan^{n-2}x)\right)dx = \int_{}^{} (\sec^{2}(x)-1)\tan^{n-2}(x) dx
= \int_{}^{} (\sec^{2}x)(\tan^{n-2}x)-\tan^{n-2}xdx
= \int_{}^{} (\sec^{2}x)(\tan^{n-2}x)-\tan^{n-2}xdx
= \int_{}^{} (\sec^{2}x)(\tan^{n-2}x) -\int_{}^{}\tan^{n-2}xdx
= \int_{}^{} (\sec^{2}x)(\tan^{n-2}x) -\int_{}^{}\tan^{n-2}(x)dx


</math>
</math>
Line 28: Line 34:
\begin{align}
\begin{align}


\int_{}^{} (\sec^{2}x)(\tan^{n-2}x)dx &= \tan^{n-2}(x) \cdot \tan(x) - \int_{}^{} (n-2)\tan^{n-3}(x)\sec^{2} \cdot \tan(x)dx \\[2ex]
\int_{}^{} (\sec^{2}x)(\tan^{n-2}x)dx = \tan^{n-2}(x) \cdot \tan(x) - \int_{}^{} (n-2)\tan^{n-3}(x)\sec^{2} \cdot \tan(x)dx \\[2ex]
&= \tan^{n-1}(x)  - \int_{}^{} (n-2)\tan^{n-2}(x)\sec^{2}dx  \\[2ex]
= \tan^{n-1}(x)  - \int_{}^{} (n-2)\tan^{n-2}(x)\sec^{2}dx  \\[2ex]
\tan^{n-1}(x)  - \int_{}^{} (n-2)\tan^{n-2}(x)\sec^{2}dx = \int_{}^{} (\sec^{2}x)(\tan^{n-2}x)dx \\[2ex]
\tan^{n-1}(x)  - \int_{}^{} (n-2)\tan^{n-2}(x)\sec^{2}dx = \int_{}^{} (\sec^{2}x)(\tan^{n-2}x)dx \\[2ex]
&= \\[2ex]


\end{align}
\end{align}
</math>
</math>


Note:
<math>
<math>
\begin{align}
\begin{align}
\tan^{2}(x) = \sec^{2}(x)-1
 
&&&&&&&&&&&+\int_{}^{}(n-2)\tan^{n-2}(x) \cdot \sec^{2}(x)dx                                      \quad &&&&&&+\int_{}^{}(n-2)\tan^{n-2}(x) \cdot \sec^{2}(x)dx
 
\end{align}
</math>
 
<math>
\begin{align}
 
\frac{\tan^{n-1}(x)}{n-1} = \frac{(n-1)}{n-1} \int_{}^{} (\sec^{2}x)(\tan^{n-2}x)dx
 
\end{align}
</math>
 
Bring down:
<math>
\begin{align}
 
-\int_{}^{}\tan^{n-2}(x)dx
 
\end{align}
</math>
 
<math>
\begin{align}
 
= \frac{\tan^{n-1}(x)}{n-1} -\int_{}^{}\tan^{n-2}(x)dx
 
\end{align}
\end{align}
</math>
</math>

Latest revision as of 04:36, 30 November 2022

Prove

Note:

Solving for

Bring down: