7.1 Integration By Parts/49: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 8: | Line 8: | ||
\int_{}^{} \left(\tan^{n}(x)\right)dx = \int_{}^{} \left((\tan^{2}x)(\tan^{n-2}x)\right)dx = \int_{}^{} (\sec^{2}(x)-1)\tan^{n-2}(x) dx | \int_{}^{} \left(\tan^{n}(x)\right)dx = \int_{}^{} \left((\tan^{2}x)(\tan^{n-2}x)\right)dx = \int_{}^{} (\sec^{2}(x)-1)\tan^{n-2}(x) dx | ||
= \int_{}^{} (\sec^{2}x)(\tan^{n-2}x)-\tan^{n-2}xdx | = \int_{}^{} (\sec^{2}x)(\tan^{n-2}x)-\tan^{n-2}xdx | ||
= \int_{}^{} (\sec^{2}x)(\tan^{n-2}x) -\int_{}^{}\tan^{n-2} | = \int_{}^{} (\sec^{2}x)(\tan^{n-2}x) -\int_{}^{}\tan^{n-2}(x)dx | ||
</math> | </math> | ||
Line 39: | Line 39: | ||
&&&&&&&&&&&+\int_{}^{}(n-2)\tan^{n-2}(x) \cdot \sec^{2}(x)dx \quad &&&&&&+\int_{}^{}(n-2)\tan^{n-2}(x) \cdot \sec^{2}(x)dx | &&&&&&&&&&&+\int_{}^{}(n-2)\tan^{n-2}(x) \cdot \sec^{2}(x)dx \quad &&&&&&+\int_{}^{}(n-2)\tan^{n-2}(x) \cdot \sec^{2}(x)dx | ||
\end{align} | |||
</math> | |||
</math> | |||
\begin{align} | |||
\frac{\tan^{n-1}(x)}{n-1} = \frac{(n-1)}{n-1} \int_{}^{} (\sec^{2}x)(\tan^{n-2}x)dx | |||
Bring down -\int_{}^{}\tan^{n-2}(x)dx | |||
= \frac{\tan^{n-1}(x)}{n-1} -\int_{}^{}\tan^{n-2}(x)dx | |||
\end{align} | \end{align} |
Revision as of 04:29, 30 November 2022
Prove
Solving for
</math> \begin{align}
\frac{\tan^{n-1}(x)}{n-1} = \frac{(n-1)}{n-1} \int_{}^{} (\sec^{2}x)(\tan^{n-2}x)dx Bring down -\int_{}^{}\tan^{n-2}(x)dx = \frac{\tan^{n-1}(x)}{n-1} -\int_{}^{}\tan^{n-2}(x)dx
\end{align} </math>
Note: