7.1 Integration By Parts/49: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 28: | Line 28: | ||
\begin{align} | \begin{align} | ||
\int_{}^{} (\sec^{2}x)(\tan^{n-2}x) &= \tan(x) \cdot \tan | \int_{}^{} (\sec^{2}x)(\tan^{n-2}x)dx &= \tan^{n-2}(x) \cdot \tan(x) - \int_{}^{} (n-2)\tan^{n-3}(x)\sec^{2} \cdot \tan(x)dx \\[2ex] | ||
&= | &= \tan^{n-1}(x) - \int_{}^{} (n-2)\tan^{n-2}(x)\sec^{2}dx \\[2ex] | ||
\tan^{n-1}(x) - \int_{}^{} (n-2)\tan^{n-2}(x)\sec^{2}dx = \int_{}^{} (\sec^{2}x)(\tan^{n-2}x)dx \\[2ex] | |||
&= \\[2ex] | |||
\end{align} | \end{align} |
Revision as of 04:15, 30 November 2022
Prove
Solving for
Note: