7.1 Integration By Parts/45: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
(2 intermediate revisions by one other user not shown) | |||
Line 43: | Line 43: | ||
<math> | |||
\begin{align} | |||
& \int_{0}^{\frac{\pi}{2}} sin^{2n+1} (x) dx \\[2ex] | |||
&= \frac{2n+1-1}{2n+1} \int_{0}^{\frac{\pi}{2}} sin^{2n+1-2} (x) dx \\[2ex] | |||
&= \frac{2n}{2n+1} \int_{0}^{\frac{\pi}{2}} sin^{2n-1} (x) dx \\[2ex] | |||
Line 74: | Line 60: | ||
</math> | </math> | ||
<math> | <math> | ||
Line 80: | Line 65: | ||
\begin{align} | \begin{align} | ||
\int_{0}^{\frac{\pi}{2}} sin^5(x) dx &= \frac{5-1}{5} \int_{0}^{\frac{\pi}{2}} sin^3(x) dx \\[2ex] | |||
&= \frac{ | &= \frac{4}{5}\int_{0}^{\frac{\pi}{2}} (1-cos^2(x)) sin(x) dx \\[2ex] | ||
&= \frac{ | &= -\int_{1}^{0} (1-u^2)\cdot du \\[2ex] | ||
&= \frac{4}{5} \left[u - \frac{u^3}{3}\right]\bigg|_{0}^{1} \\[2ex] | |||
& u= cos(x) \\[2ex] | |||
& du= -sin(x) \\[2ex] | |||
& dx= \frac{du}{-sin(x)} \\[2ex] | |||
& \int sin^3(x) dx \\[2ex] | |||
&= \frac{4}{5} [1-\frac{1}{3}] \\[2ex] | |||
&= \frac{8}{15} | |||
Latest revision as of 00:30, 30 November 2022