7.1 Integration By Parts/45: Difference between revisions
Jump to navigation
Jump to search
(Created page with "<math> \begin{align} & \int_{0}^{\frac{\pi}{2}} sin^n(x) dx = \frac{n-1}{n} \int_{0}^{\frac{\pi}{2}} sin^{n-2} (x) dx \\[2ex] &= -\frac{1}{n} cos(x) sin^{n-1} (x) + \frac{n-1}{n} \bigg|_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} sin^{n-2}(x) dx \\[2ex] &= -\frac{1}{n} cos(\frac{\pi}{2}) sin^{n-1} (\frac{\pi}{2})+ \frac{n-1}{n} \int_{0}^{\frac{\pi}{2}} sin^{n-2}(x) dx \\[2ex] &= -\frac{1}{n} (0) (1) + \frac{n-1}{n} \int_{0}^{\frac{\pi}{2}} sin^{n-2}(x) dx \\[2ex] &...") |
No edit summary |
||
(3 intermediate revisions by 2 users not shown) | |||
Line 41: | Line 41: | ||
</math> | </math> | ||
Line 47: | Line 50: | ||
\begin{align} | \begin{align} | ||
& \int_{0}^{\frac{\pi}{2}} sin^{2n+1} (x) dx \\[2ex] | |||
&= \frac{2n+1-1}{2n+1} \int_{0}^{\frac{\pi}{2}} sin^{2n+1-2} (x) dx \\[2ex] | |||
&= \frac{2n}{2n+1} \int_{0}^{\frac{\pi}{2}} sin^{2n-1} (x) dx \\[2ex] | |||
\end{align} | |||
</math> | |||
<math> | |||
\begin{align} | |||
\int_{0}^{\frac{\pi}{2}} sin^5(x) dx &= \frac{5-1}{5} \int_{0}^{\frac{\pi}{2}} sin^3(x) dx \\[2ex] | |||
&= \frac{4}{5}\int_{0}^{\frac{\pi}{2}} (1-cos^2(x)) sin(x) dx \\[2ex] | |||
&= -\int_{1}^{0} (1-u^2)\cdot du \\[2ex] | |||
&= \frac{4}{5} \left[u - \frac{u^3}{3}\right]\bigg|_{0}^{1} \\[2ex] | |||
& u= cos(x) \\[2ex] | & u= cos(x) \\[2ex] | ||
& du= -sin(x) \\[2ex] | & du= -sin(x) \\[2ex] | ||
& dx= \frac{du}{-sin(x)} \\[2ex] | & dx= \frac{du}{-sin(x)} \\[2ex] | ||
& \int sin^3(x) dx \\[2ex] | & \int sin^3(x) dx \\[2ex] | ||
&= \frac{4}{5} [1-\frac{1}{3}] \\[2ex] | |||
&= \frac{4}{5} [ | |||
&= \frac{8}{15} | &= \frac{8}{15} | ||
Latest revision as of 00:30, 30 November 2022