7.1 Integration By Parts/7: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 2: | Line 2: | ||
\begin{align} | \begin{align} | ||
&=\int x^2 sin (\pi x)\\[2ex] | &=\int x^2 sin (\pi x)\\[2ex] | ||
& U=x^2 , du= 2xdx , dv= sin(\pi x)dx , v=-\frac{1}{\pi}cos(\pi x) \\[2ex] | & U=x^2 ,\\[1ex] du= 2xdx ,\\[1ex] dv= sin(\pi x)dx ,\\[1ex] v=-\frac{1}{\pi}cos(\pi x) \\[2ex] | ||
&=-\frac{x^2}{\pi}cos(\pi x) +\frac{2}{\pi} \int x cos (\pi x) dx\\[2ex] | &=-\frac{x^2}{\pi}cos(\pi x) +\frac{2}{\pi} \int x cos (\pi x) dx\\[2ex] | ||
&U=x, du= dx, dv= cos(\pi x) dx, v=\frac{1}{\pi}sin (\pi x) \\[2ex] | &U=x,\\[1ex] du= dx,\\[1ex] dv= cos(\pi x) dx,\\[1ex] v=\frac{1}{\pi}sin (\pi x) \\[2ex] | ||
&=-\frac{x^2}{\pi}cos(\pi x)+ \frac{2}{\pi}[\frac{x}{\pi}sin(\pi x) - \frac{1}{\pi}\int sin (\pi x) dx]\\[2ex] | &=-\frac{x^2}{\pi}cos(\pi x)+ \frac{2}{\pi}[\frac{x}{\pi}sin(\pi x) - \frac{1}{\pi}\int sin (\pi x) dx]\\[2ex] | ||
&= -\frac{x^2}{\pi}cos(\pi x)+ \frac{2}{\pi}[\frac{x}{\pi}sin(\pi x) - \frac{1}{\pi^2}cos(\pi x) ] +c\\[2ex] | &= -\frac{x^2}{\pi}cos(\pi x)+ \frac{2}{\pi}[\frac{x}{\pi}sin(\pi x) - \frac{1}{\pi^2}cos(\pi x) ] +c\\[2ex] | ||
\end{align} | \end{align} | ||
</math> | </math> |
Revision as of 00:15, 30 November 2022