6.2 Volumes/7: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
(Created page with "<math>y=x^{3}</math>, <math>y=x</math>, (x-axis) <math>pi\int_{0}^{1}\left((x)^2-(x^3)^2)\right)dx</math> <math>=(pi)\int_{0}^{1}\left((x^2-x^6)\right)dx</math> <math>=pi(\frac{x^3}{3}-\frac{x^7}{7})\bigg|_{0}^{1}</math> <math>=pi(\frac{1}{3}-\frac{1}{7})</math> <math>=\frac{7pi}{21}-\frac{3pi}{21}</math> <math>=\frac{4pi}{21}</math>")
 
No edit summary
Line 1: Line 1:
<math>y=x^{3}</math>, <math>y=x</math>, (x-axis)
<math>y=x^{3}</math>, <math>y=x</math>, (x-axis)


<math>pi\int_{0}^{1}\left((x)^2-(x^3)^2)\right)dx</math>
<math>\pi\int_{0}^{1}\left((x)^2-(x^3)^2)\right)dx</math>


<math>=(pi)\int_{0}^{1}\left((x^2-x^6)\right)dx</math>
<math>=(\pi)\int_{0}^{1}\left((x^2-x^6)\right)dx</math>


<math>=pi(\frac{x^3}{3}-\frac{x^7}{7})\bigg|_{0}^{1}</math>
<math>=\pi(\frac{x^3}{3}-\frac{x^7}{7})\bigg|_{0}^{1}</math>


<math>=pi(\frac{1}{3}-\frac{1}{7})</math> <math>=\frac{7pi}{21}-\frac{3pi}{21}</math> <math>=\frac{4pi}{21}</math>
<math>=\pi(\frac{1}{3}-\frac{1}{7})</math> <math>=\frac{7pi}{21}-\frac{3pi}{21}</math> <math>=\frac{4pi}{21}</math>

Revision as of 20:45, 29 November 2022

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle y=x^{3}} , Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle y=x} , (x-axis)

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \pi\int_{0}^{1}\left((x)^2-(x^3)^2)\right)dx}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle =(\pi)\int_{0}^{1}\left((x^2-x^6)\right)dx}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle =\pi(\frac{x^3}{3}-\frac{x^7}{7})\bigg|_{0}^{1}}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle =\pi(\frac{1}{3}-\frac{1}{7})} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle =\frac{7pi}{21}-\frac{3pi}{21}} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle =\frac{4pi}{21}}