7.1 Integration By Parts/50: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 32: | Line 32: | ||
\int_{}^{} \sec^{n}(x)dx = \sec^{n-2}(x) \cdot \tan(x) - (n-2)\int_{}^{} \sec^{n}(x)dx + (n-2) \int_{}^{}\sec^{n-2}(x)dx | \int_{}^{} \sec^{n}(x)dx = \sec^{n-2}(x) \cdot \tan(x) - (n-2)\int_{}^{} \sec^{n}(x)dx + (n-2) \int_{}^{}\sec^{n-2}(x)dx | ||
</math> | |||
\end{align} |
Revision as of 19:06, 29 November 2022
Prove
Failed to parse (unknown function "\begin{align}"): {\displaystyle \begin{align} \int_{}^{} \sec^{n}(x)dx = \sec^{n-2}(x) \cdot \tan(x) - (n-2)\int_{}^{} \sec^{n}(x)dx + (n-2) \int_{}^{}\sec^{n-2}(x)dx } \end{align}