From Mr. V Wiki Math
|
|
Line 27: |
Line 27: |
| \end{align} | | \end{align} |
| </math> | | </math> |
| | |
| | <math> |
| | \begin{align} |
| | |
| | \int_{}^{} \sec^{n}(x)dx = \sec^{n-2}(x) \cdot \tan(x) - (n-2)\int_{}^{} \sec^{n}(x)dx + (n-2) \int_{}^{}\sec^{n-2}(x)dx |
Revision as of 19:06, 29 November 2022
Prove
<math>
\begin{align}
\int_{}^{} \sec^{n}(x)dx = \sec^{n-2}(x) \cdot \tan(x) - (n-2)\int_{}^{} \sec^{n}(x)dx + (n-2) \int_{}^{}\sec^{n-2}(x)dx