7.1 Integration By Parts/50: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 21: Line 21:
\int_{}^{} \sec^{2}(x) \cdot \sec^{n-2}(x) dx &= \sec^{n-2}(x) \cdot \tan(x) - \int_{}^{} \left[(n-2)\sec^{n-3}(x) \cdot \sec(x)\tan(x)\right]\cdot \tan(x)dx  \\[2ex]
\int_{}^{} \sec^{2}(x) \cdot \sec^{n-2}(x) dx &= \sec^{n-2}(x) \cdot \tan(x) - \int_{}^{} \left[(n-2)\sec^{n-3}(x) \cdot \sec(x)\tan(x)\right]\cdot \tan(x)dx  \\[2ex]


&= sec^{n-2}(x) \cdot \tan(x) - (n-2)\int_{}^{} \left[\sec^{n-2}(x) \cdot \tan^{2}(x)\right]dx \\[2ex]
&= \sec^{n-2}(x) \cdot \tan(x) - (n-2)\int_{}^{} \left[\sec^{n-2}(x) \cdot \tan^{2}(x)\right]dx \\[2ex]
&= sec^{n-2}(x) \cdot \tan(x) - (n-2)\int_{}^{} \sec^{n-2}(x) \cdot [\sec^{2}(x)-1]dx \\[2ex]
&= \sec^{n-2}(x) \cdot \tan(x) - (n-2)\int_{}^{} \sec^{n-2}(x) \cdot [\sec^{2}(x)-1]dx \\[2ex]
&= sec^{n-2}(x) \cdot \tan(x) - (n-2)\int_{}^{} \left[\sec^{n}(x) - \sec^{n-2}(x)\right]dx \\[2ex]
&= \sec^{n-2}(x) \cdot \tan(x) - (n-2)\int_{}^{} \left[\sec^{n}(x) - \sec^{n-2}(x)\right]dx \\[2ex]


\end{align}
\end{align}
</math>
</math>

Revision as of 19:01, 29 November 2022

Prove