7.1 Integration By Parts/50: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 21: | Line 21: | ||
\int_{}^{} \sec^{2}(x) \cdot \sec^{n-2}(x) dx &= \sec^{n-2}(x) \cdot \tan(x) - \int_{}^{} \left[(n-2)\sec^{n-3}(x) \cdot \sec(x)\tan(x)\right]\cdot \tan(x)dx \\[2ex] | \int_{}^{} \sec^{2}(x) \cdot \sec^{n-2}(x) dx &= \sec^{n-2}(x) \cdot \tan(x) - \int_{}^{} \left[(n-2)\sec^{n-3}(x) \cdot \sec(x)\tan(x)\right]\cdot \tan(x)dx \\[2ex] | ||
&= sec^{n-2}(x) \cdot \tan(x) - (n-2)\int_{}^{} \left[\sec^{n-2}(x) \cdot \tan^{2}(x)\right]dx \\[2ex] | &= \sec^{n-2}(x) \cdot \tan(x) - (n-2)\int_{}^{} \left[\sec^{n-2}(x) \cdot \tan^{2}(x)\right]dx \\[2ex] | ||
&= sec^{n-2}(x) \cdot \tan(x) - (n-2)\int_{}^{} \sec^{n-2}(x) \cdot [\sec^{2}(x)-1]dx \\[2ex] | &= \sec^{n-2}(x) \cdot \tan(x) - (n-2)\int_{}^{} \sec^{n-2}(x) \cdot [\sec^{2}(x)-1]dx \\[2ex] | ||
&= sec^{n-2}(x) \cdot \tan(x) - (n-2)\int_{}^{} \left[\sec^{n}(x) - \sec^{n-2}(x)\right]dx \\[2ex] | &= \sec^{n-2}(x) \cdot \tan(x) - (n-2)\int_{}^{} \left[\sec^{n}(x) - \sec^{n-2}(x)\right]dx \\[2ex] | ||
\end{align} | \end{align} | ||
</math> | </math> |
Revision as of 19:01, 29 November 2022
Prove