7.1 Integration By Parts/50: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
Prove
Prove
<math>
<math>
\int_{}^{} \sec^{n}x = \frac{\tan(x) \cdot \sec^{n-2}(x)}{n-1} + \frac{n-2}{n-1} \int_{}^{} \sec^{n-2}(x)dx
\int_{}^{} \sec^{n}(x)dx = \frac{\tan(x) \cdot \sec^{n-2}(x)}{n-1} + \frac{n-2}{n-1} \int_{}^{} \sec^{n-2}(x)dx
</math>
</math>


<math>
<math>
\int_{}^{} \left(\ln(x)^{n}\right)dx
\int_{}^{} \sec^{n}(x)dx
</math>
</math>



Revision as of 18:28, 29 November 2022

Prove