7.1 Integration By Parts/51b: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
| Line 21: | Line 21: | ||
&= x\ln^{3}(x) -3x\ln^{2}{(x)} + 6\left[\ln{(x)}\cdot x - \int dx\right] \\[1ex] | &= x\ln^{3}(x) -3x\ln^{2}{(x)} + 6\left[\ln{(x)}\cdot x - \int dx\right] \\[1ex] | ||
&= x\ln^{3}(x) -3x\ln^{2}{(x)} + 6x\ln{(x)} - 6x + C | &= x\ln^{3}(x) -3x\ln^{2}{(x)} + 6x\ln{(x)} - 6x + C | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
Revision as of 18:16, 29 November 2022
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \text{Use } \int(\ln{(x)}^{n} = x(\ln{x})^n - n\int(\ln{x})^{n-1}dx }