7.1 Integration By Parts/51b: Difference between revisions
No edit summary |
No edit summary |
||
| Line 14: | Line 14: | ||
} \\ [1ex] | } \\ [1ex] | ||
&= x\ln(x) | &= x\ln^{3}(x) -3\left[\ln^{2}{(x)}\cdot x - 2\int\ln{(x)}dx\right] \\ [1ex] | ||
&= x\ln(x) | &= x\ln^{3}(x) -3x\ln^{2}{(x)} + \underbrace{6\int\ln{(x)}dx}_{ | ||
\begin{aligned} | \begin{aligned} | ||
u & = \ln{(x)} & dv &= dx \\[0.6ex] | u & = \ln{(x)} & dv &= dx \\[0.6ex] | ||
| Line 21: | Line 21: | ||
\end{aligned}} \\ [1ex] | \end{aligned}} \\ [1ex] | ||
&= x\ln(x) | &= x\ln^{3}(x) -3x\ln^{2}{(x)} + 6\left[\ln{(x)}\cdot x - \int dx\right] \\[1ex] | ||
&= x\ln(x) | &= x\ln^{3}(x) -3x\ln^{2}{(x)} + 6x\ln{(x)} - 6x + C | ||
Revision as of 18:01, 29 November 2022
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \text{Use exercise 47 to evaluate} \int(\ln{x})^3dx }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \text{Exercise 47: } x(\ln{x})^n-n\int(\ln{x})^{n-1}dx }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \int\ln(x)^3dx &= x\ln(x)^3 -\underbrace{3\int\ln(x)^2dx}_{ \begin{aligned} u & = \ln^{2}{(x)} & dv &= dx \\[0.6ex] du & = \tfrac{2\ln{(x)}}{x}dx & v &= x \end{aligned} } \\ [1ex] &= x\ln^{3}(x) -3\left[\ln^{2}{(x)}\cdot x - 2\int\ln{(x)}dx\right] \\ [1ex] &= x\ln^{3}(x) -3x\ln^{2}{(x)} + \underbrace{6\int\ln{(x)}dx}_{ \begin{aligned} u & = \ln{(x)} & dv &= dx \\[0.6ex] du & = \tfrac{1}{x}dx & v &= x \end{aligned}} \\ [1ex] &= x\ln^{3}(x) -3x\ln^{2}{(x)} + 6\left[\ln{(x)}\cdot x - \int dx\right] \\[1ex] &= x\ln^{3}(x) -3x\ln^{2}{(x)} + 6x\ln{(x)} - 6x + C \end{align} }