7.1 Integration By Parts/51b: Difference between revisions
Jump to navigation
Jump to search
No edit summary Tag: Manual revert |
No edit summary |
||
| Line 15: | Line 15: | ||
&= x\ln(x)^3 -3\left[\ln^{2}{(x)}\cdot x - 2\int\ln{(x)}dx\right] \\ [1ex] | &= x\ln(x)^3 -3\left[\ln^{2}{(x)}\cdot x - 2\int\ln{(x)}dx\right] \\ [1ex] | ||
&= x\ln(x)^3 -3x\ln^{2}{(x)} + 6\int\ln{(x)}dx \\ [1ex] | &= x\ln(x)^3 -3x\ln^{2}{(x)} + 6\int\underbrace{\ln{(x)}dx}_{ | ||
\begin{aligned} | |||
\end{aligned}} \\ [1ex] | |||
\end{align} | \end{align} | ||
</math> | </math> | ||
Revision as of 17:57, 29 November 2022
Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}\int \ln(x)^{3}dx&=x\ln(x)^{3}-\underbrace {3\int \ln(x)^{2}dx} _{\begin{aligned}u&=\ln ^{2}{(x)}&dv&=dx\\[0.6ex]du&={\tfrac {2\ln {(x)}}{x}}dx&v&=x\end{aligned}}\\[1ex]&=x\ln(x)^{3}-3\left[\ln ^{2}{(x)}\cdot x-2\int \ln {(x)}dx\right]\\[1ex]&=x\ln(x)^{3}-3x\ln ^{2}{(x)}+6\int \underbrace {\ln {(x)}dx} _{\begin{aligned}\end{aligned}}\\[1ex]\end{aligned}}}