7.1 Integration By Parts/51b: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 12: Line 12:
du & = \tfrac{2\ln{(x)}}{x}dx  & v &= x
du & = \tfrac{2\ln{(x)}}{x}dx  & v &= x
\end{aligned}
\end{aligned}
} \\
} \\ [0.8ex]


&= x\ln(x)^3 -3\left[\ln^{2}{(x)}\cdot x - 2\int\ln{(x)}dx\right] \\
&= x\ln(x)^3 -3\left[\ln^{2}{(x)}\cdot x - 2\int\ln{(x)}dx\right] \\ [0.8ex]
\end{align}
\end{align}


</math>
</math>

Revision as of 17:54, 29 November 2022

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \text{Use exercise 47 to evaluate} \int(\ln{x})^3dx }

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \text{Exercise 47: } x(\ln{x})^n-n\int(\ln{x})^{n-1}dx }

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \int\ln(x)^3dx &= x\ln(x)^3 -\underbrace{3\int\ln(x)^2dx}_{ \begin{aligned} u & = \ln^{2}{(x)} & dv &= dx \\[0.6ex] du & = \tfrac{2\ln{(x)}}{x}dx & v &= x \end{aligned} } \\ [0.8ex] &= x\ln(x)^3 -3\left[\ln^{2}{(x)}\cdot x - 2\int\ln{(x)}dx\right] \\ [0.8ex] \end{align} }