7.1 Integration By Parts/51b: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 9: Line 9:


\begin{aligned}
\begin{aligned}
c &= 1 \\
u &= x^{2}+1 \quad dv= e^{-x}dx \\[2ex]
ddd &= 12 \\
du &= 2xdx        \qquad v= -e^{-x} \\[2ex]
 
\end{aligned}
\end{aligned}
}
}

Revision as of 17:44, 29 November 2022

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \text{Use exercise 47 to evaluate} \int(\ln{x})^3dx }

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \text{Exercise 47: } x(\ln{x})^n-n\int(\ln{x})^{n-1}dx }

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \int\ln(x)^3dx &= x\ln(x)^3 -3\underbrace{\int\ln(x)^2dx}_{ \begin{aligned} u &= x^{2}+1 \quad dv= e^{-x}dx \\[2ex] du &= 2xdx \qquad v= -e^{-x} \\[2ex] \end{aligned} } \end{align} }